Installation ============ AlphaPy Pro requires Python 3.10 or higher. You can install it directly from the source repository or via pip after it's published. Development Installation ------------------------ To install AlphaPy Pro for development, clone the repository and install in editable mode:: git clone https://github.com/ScottFreeLLC/alphapy-pro.git cd alphapy-pro pip install -e . This will install AlphaPy Pro along with all required dependencies. Dependencies ------------ AlphaPy Pro will automatically install the following core dependencies: * **Data Processing**: pandas>=2.0.0, numpy>=1.24.0 * **Machine Learning**: scikit-learn>=1.3.0 * **Gradient Boosting**: xgboost>=2.0.0, lightgbm>=4.0.0, catboost>=1.2 * **Visualization**: matplotlib>=3.7.0, seaborn>=0.12.0 * **Configuration**: pyyaml>=6.0 Additional dependencies for specific features: * **Market Data**: yfinance, polygon-api-client, pandas-datareader * **Feature Engineering**: category_encoders, lofo-importance * **Imbalanced Learning**: imbalanced-learn * **Calibration**: venn-abers * **Portfolio Analysis**: pyfolio (optional, for legacy support) Anaconda Python --------------- If you're using Anaconda Python, you can create a dedicated environment for AlphaPy Pro: .. code-block:: bash conda create -n alphapy-pro python=3.9 conda activate alphapy-pro # Install from conda-forge when available conda install -c conda-forge pandas numpy scikit-learn matplotlib seaborn pyyaml conda install -c conda-forge xgboost lightgbm catboost # Install remaining packages via pip pip install yfinance polygon-api-client lofo-importance pip install imbalanced-learn category_encoders venn-abers # Install AlphaPy Pro cd /path/to/alphapy-pro pip install -e . Platform-Specific Notes ----------------------- **macOS (Apple Silicon)** If you're on an M1/M2 Mac, some packages may require special handling. LightGBM and XGBoost should install correctly with recent versions. **Windows** All packages should install correctly via pip. If you encounter issues with XGBoost, refer to the official XGBoost documentation. **Linux** Standard installation should work without issues. Ensure you have Python development headers installed (python3-dev on Ubuntu/Debian). Verifying Installation ---------------------- After installation, verify that AlphaPy Pro is correctly installed:: # Check if the alphapy command is available alphapy --help # Check if the mflow command is available mflow --help # In Python, verify imports python -c "import alphapy; print(alphapy.__version__)" Troubleshooting --------------- If you encounter installation issues: 1. **Upgrade pip**: ``pip install --upgrade pip`` 2. **Clear pip cache**: ``pip cache purge`` 3. **Install with verbose output**: ``pip install -v -e .`` 4. **Check for conflicting packages**: ``pip check`` For specific package issues, consult the documentation for that package: * XGBoost: https://xgboost.readthedocs.io/ * LightGBM: https://lightgbm.readthedocs.io/ * CatBoost: https://catboost.ai/docs/