alphapy package

Submodules

alphapy.alias module

class alphapy.alias.Alias(name, expr, replace=False)

Bases: object

Create a new alias as a key-value pair. All aliases are stored in Alias.aliases. Duplicate keys or values are not allowed, unless the replace parameter is True.

Parameters:
  • name (str) – Alias key.

  • expr (str) – Alias value.

  • replace (bool, optional) – Replace the current key-value pair if it already exists.

Variables:

Alias.aliases (dict) – Class variable for storing all known aliases

Examples

>>> Alias('atr', 'ma_truerange')
>>> Alias('hc', 'higher_close')
aliases = {}
alphapy.alias.get_alias(alias)

Find an alias value with the given key.

Parameters:

alias (str) – Key for finding the alias value.

Returns:

alias_value – Value for the corresponding key.

Return type:

str

Examples

>>> alias_value = get_alias('atr')
>>> alias_value = get_alias('hc')

alphapy.alphapy_main module

alphapy.calendrical module

Package : calendrical Created : July 11, 2017 Reference : Calendrical Calculations, Cambridge Press, 2002

Copyright 2020 ScottFree Analytics LLC Mark Conway & Robert D. Scott II

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

alphapy.calendrical.biz_day_month(rdate)

Calculate the business day of the month.

Parameters:

rdate (int) – RDate date format.

Returns:

bdm – Business day of month.

Return type:

int

alphapy.calendrical.biz_day_week(rdate)

Calculate the business day of the week.

Parameters:

rdate (int) – RDate date format.

Returns:

bdw – Business day of week.

Return type:

int

alphapy.calendrical.christmas_day(gyear, observed)

Get Christmas Day for a given year.

Parameters:
  • gyear (int) – Gregorian year.

  • observed (bool) – False if the exact date, True if the weekday.

Returns:

xmas – Christmas Day in RDate format.

Return type:

int

alphapy.calendrical.cinco_de_mayo(gyear)

Get Cinco de Mayo for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

cinco_de_mayo – Cinco de Mayo in RDate format.

Return type:

int

alphapy.calendrical.day_of_week(rdate)

Get the ordinal day of the week.

Parameters:

rdate (int) – RDate date format.

Returns:

dw – Ordinal day of the week.

Return type:

int

alphapy.calendrical.day_of_year(gyear, gmonth, gday)

Calculate the day number of the given calendar year.

Parameters:
  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

  • gday (int) – Gregorian day.

Returns:

dy – Day number of year in RDate format.

Return type:

int

alphapy.calendrical.days_left_in_year(gyear, gmonth, gday)

Calculate the number of days remaining in the calendar year.

Parameters:
  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

  • gday (int) – Gregorian day.

Returns:

days_left – Calendar days remaining in RDate format.

Return type:

int

alphapy.calendrical.easter_day(gyear)

Get Easter Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

ed – Easter Day in RDate format.

Return type:

int

alphapy.calendrical.expand_dates(date_list)
alphapy.calendrical.fathers_day(gyear)

Get Father’s Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

fathers_day – Father’s Day in RDate format.

Return type:

int

alphapy.calendrical.first_kday(k, gyear, gmonth, gday)

Calculate the first kday in RDate format.

Parameters:
  • k (int) – Day of the week.

  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

  • gday (int) – Gregorian day.

Returns:

fkd – first-kday in RDate format.

Return type:

int

alphapy.calendrical.gdate_to_rdate(gyear, gmonth, gday)

Convert Gregorian date to RDate format.

Parameters:
  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

  • gday (int) – Gregorian day.

Returns:

rdate – RDate date format.

Return type:

int

alphapy.calendrical.get_holiday_names()

Get the list of defined holidays.

Returns:

holidays – List of holiday names.

Return type:

list of str

alphapy.calendrical.get_nth_kday_of_month(gday, gmonth, gyear)

Convert Gregorian date to RDate format.

Parameters:
  • gday (int) – Gregorian day.

  • gmonth (int) – Gregorian month.

  • gyear (int) – Gregorian year.

Returns:

nth – Ordinal number of a given day’s occurrence within the month, for example, the third Friday of the month.

Return type:

int

alphapy.calendrical.get_rdate(row)

Extract RDate from a dataframe.

Parameters:

row (pandas.DataFrame) – Row of a dataframe containing year, month, and day.

Returns:

rdate – RDate date format.

Return type:

int

alphapy.calendrical.good_friday(gyear)

Get Good Friday for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

gf – Good Friday in RDate format.

Return type:

int

alphapy.calendrical.halloween(gyear)

Get Halloween for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

halloween – Halloween in RDate format.

Return type:

int

alphapy.calendrical.independence_day(gyear, observed)

Get Independence Day for a given year.

Parameters:
  • gyear (int) – Gregorian year.

  • observed (bool) – False if the exact date, True if the weekday.

Returns:

d4j – Independence Day in RDate format.

Return type:

int

alphapy.calendrical.kday_after(rdate, k)

Calculate the day after a given RDate.

Parameters:
  • rdate (int) – RDate date format.

  • k (int) – Day of the week.

Returns:

kda – kday-after in RDate format.

Return type:

int

alphapy.calendrical.kday_before(rdate, k)

Calculate the day before a given RDate.

Parameters:
  • rdate (int) – RDate date format.

  • k (int) – Day of the week.

Returns:

kdb – kday-before in RDate format.

Return type:

int

alphapy.calendrical.kday_nearest(rdate, k)

Calculate the day nearest a given RDate.

Parameters:
  • rdate (int) – RDate date format.

  • k (int) – Day of the week.

Returns:

kdn – kday-nearest in RDate format.

Return type:

int

alphapy.calendrical.kday_on_after(rdate, k)

Calculate the day on or after a given RDate.

Parameters:
  • rdate (int) – RDate date format.

  • k (int) – Day of the week.

Returns:

kdoa – kday-on-or-after in RDate format.

Return type:

int

alphapy.calendrical.kday_on_before(rdate, k)

Calculate the day on or before a given RDate.

Parameters:
  • rdate (int) – RDate date format.

  • k (int) – Day of the week.

Returns:

kdob – kday-on-or-before in RDate format.

Return type:

int

alphapy.calendrical.labor_day(gyear)

Get Labor Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

lday – Labor Day in RDate format.

Return type:

int

alphapy.calendrical.last_kday(k, gyear, gmonth, gday)

Calculate the last kday in RDate format.

Parameters:
  • k (int) – Day of the week.

  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

  • gday (int) – Gregorian day.

Returns:

lkd – last-kday in RDate format.

Return type:

int

alphapy.calendrical.leap_year(gyear)

Determine if this is a Gregorian leap year.

Parameters:

gyear (int) – Gregorian year.

Returns:

leap_year – True if a Gregorian leap year, else False.

Return type:

bool

alphapy.calendrical.memorial_day(gyear)

Get Memorial Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

md – Memorial Day in RDate format.

Return type:

int

alphapy.calendrical.mlk_day(gyear)

Get Martin Luther King Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

mlkday – Martin Luther King Day in RDate format.

Return type:

int

alphapy.calendrical.mothers_day(gyear)

Get Mother’s Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

mothers_day – Mother’s Day in RDate format.

Return type:

int

alphapy.calendrical.new_years_day(gyear, observed)

Get New Year’s day for a given year.

Parameters:
  • gyear (int) – Gregorian year.

  • observed (bool) – False if the exact date, True if the weekday.

Returns:

nyday – New Year’s Day in RDate format.

Return type:

int

alphapy.calendrical.next_event(rdate, events)

Find the next event after a given date.

Parameters:
  • rdate (int) – RDate date format.

  • events (list of RDate (int)) – Monthly events in RDate format.

Returns:

event – Next event in RDate format.

Return type:

RDate (int)

alphapy.calendrical.next_holiday(rdate, holidays)

Find the next holiday after a given date.

Parameters:
  • rdate (int) – RDate date format.

  • holidays (dict of RDate (int)) – Holidays in RDate format.

Returns:

holiday – Next holiday in RDate format.

Return type:

RDate (int)

alphapy.calendrical.nth_bizday(n, gyear, gmonth)

Calculate the nth business day in a month.

Parameters:
  • n (int) – Number of the business day to get.

  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

Returns:

bizday – Nth business day of a given month in RDate format.

Return type:

int

alphapy.calendrical.nth_kday(n, k, gyear, gmonth, gday)

Calculate the nth-kday in RDate format.

Parameters:
  • n (int) – Occurrence of a given day counting in either direction.

  • k (int) – Day of the week.

  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

  • gday (int) – Gregorian day.

Returns:

nthkday – nth-kday in RDate format.

Return type:

int

alphapy.calendrical.presidents_day(gyear)

Get President’s Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

prezday – President’s Day in RDate format.

Return type:

int

alphapy.calendrical.previous_event(rdate, events)

Find the previous event before a given date.

Parameters:
  • rdate (int) – RDate date format.

  • events (list of RDate (int)) – Monthly events in RDate format.

Returns:

event – Previous event in RDate format.

Return type:

RDate (int)

alphapy.calendrical.previous_holiday(rdate, holidays)

Find the previous holiday before a given date.

Parameters:
  • rdate (int) – RDate date format.

  • holidays (dict of RDate (int)) – Holidays in RDate format.

Returns:

holiday – Previous holiday in RDate format.

Return type:

RDate (int)

alphapy.calendrical.rdate_to_gdate(rdate)

Convert RDate format to Gregorian date format.

Parameters:

rdate (int) – RDate date format.

Returns:

  • gyear (int) – Gregorian year.

  • gmonth (int) – Gregorian month.

  • gday (int) – Gregorian day.

alphapy.calendrical.rdate_to_gyear(rdate)

Convert RDate format to Gregorian year.

Parameters:

rdate (int) – RDate date format.

Returns:

gyear – Gregorian year.

Return type:

int

alphapy.calendrical.saint_patricks_day(gyear)

Get Saint Patrick’s day for a given year.

Parameters:
  • gyear (int) – Gregorian year.

  • observed (bool) – False if the exact date, True if the weekday.

Returns:

patricks – Saint Patrick’s Day in RDate format.

Return type:

int

alphapy.calendrical.set_events(n, k, gyear, gday)

Define monthly events for a given year.

Parameters:
  • n (int) – Occurrence of a given day counting in either direction.

  • k (int) – Day of the week.

  • gyear (int) – Gregorian year for the events.

  • gday (int) – Gregorian day representing the first day to consider.

Returns:

events – Monthly events in RDate format.

Return type:

list of RDate (int)

Example

>>> # Options Expiration (Third Friday of every month)
>>> set_events(3, 5, 2017, 1)
alphapy.calendrical.set_holidays(gyear, observe)

Determine if this is a Gregorian leap year.

Parameters:
  • gyear (int) – Value for the corresponding key.

  • observe (bool) – True to get the observed date, otherwise False.

Returns:

holidays – Set of holidays in RDate format for a given year.

Return type:

dict of int

alphapy.calendrical.subtract_dates(gyear1, gmonth1, gday1, gyear2, gmonth2, gday2)

Calculate the difference between two Gregorian dates.

Parameters:
  • gyear1 (int) – Gregorian year of first date.

  • gmonth1 (int) – Gregorian month of first date.

  • gday1 (int) – Gregorian day of first date.

  • gyear2 (int) – Gregorian year of successive date.

  • gmonth2 (int) – Gregorian month of successive date.

  • gday2 (int) – Gregorian day of successive date.

Returns:

delta_days – Difference in days in RDate format.

Return type:

int

alphapy.calendrical.thanksgiving_day(gyear)

Get Thanksgiving Day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

tday – Thanksgiving Day in RDate format.

Return type:

int

alphapy.calendrical.valentines_day(gyear)

Get Valentine’s day for a given year.

Parameters:

gyear (int) – Gregorian year.

Returns:

valentines – Valentine’s Day in RDate format.

Return type:

int

alphapy.calendrical.veterans_day(gyear, observed)

Get Veteran’s day for a given year.

Parameters:
  • gyear (int) – Gregorian year.

  • observed (bool) – False if the exact date, True if the weekday.

Returns:

veterans – Veteran’s Day in RDate format.

Return type:

int

alphapy.data module

alphapy.estimators module

class alphapy.estimators.Estimator(algorithm, model_type, estimator, grid)

Bases: object

Store information about each estimator.

Parameters:
  • algorithm (str) – Abbreviation representing the given algorithm.

  • model_type (enum ModelType) – The machine learning task for this algorithm.

  • estimator (function) – A scikit-learn, TensorFlow, or XGBoost function.

  • grid (dict) – The dictionary of hyperparameters for grid search.

alphapy.estimators.find_optional_packages()

Find optional machine learning packages.

Parameters:

None

Return type:

None

alphapy.estimators.get_algos_config(cfg_dir)

Read the algorithms configuration file.

Parameters:

cfg_dir (str) – The directory where the configuration file algos.yml is stored.

Returns:

specs – The specifications for determining which algorithms to run.

Return type:

dict

alphapy.estimators.get_estimators(alphapy_specs, model)

Define all the AlphaPy estimators based on the contents of the algos.yml file.

Parameters:
  • alphapy_specs (dict) – The specifications for controlling the AlphaPy pipeline.

  • model (alphapy.Model) – The model object containing global AlphaPy parameters.

Returns:

estimators – All of the estimators required for running the pipeline.

Return type:

dict

alphapy.features module

alphapy.frame module

class alphapy.frame.Frame(name, space, df)

Bases: object

Create a new Frame that points to a dataframe in memory. All frames are stored in Frame.frames. Names must be unique.

Parameters:
  • name (str) – Frame key.

  • space (alphapy.Space) – Namespace of the given frame.

  • df (pandas.DataFrame) – The contents of the actual dataframe.

Variables:

frames (dict) – Class variable for storing all known frames

Examples

>>> Frame('tech', Space('stock', 'prices', '5m'), df)
frames = {}
alphapy.frame.dump_frames(group, directory, extension, separator)

Save a group of data frames to disk.

Parameters:
  • group (alphapy.Group) – The collection of frames to be saved to the file system.

  • directory (str) – Full directory specification.

  • extension (str) – File name extension, e.g., csv.

  • separator (str) – The delimiter between fields in the file.

Returns:

None

Return type:

None

alphapy.frame.frame_name(name, space)

Get the frame name for the given name and space.

Parameters:
  • name (str) – Group name.

  • space (alphapy.Space) – Context or namespace for the given group name.

Returns:

fname – Frame name.

Return type:

str

Examples

>>> fname = frame_name('tech', Space('stock', 'prices', '1d'))
# 'tech_stock_prices_1d'
alphapy.frame.load_frames(group, directory, extension, separator, splits=False)

Read a group of dataframes into memory.

Parameters:
  • group (alphapy.Group) – The collection of frames to be read into memory.

  • directory (str) – Full directory specification.

  • extension (str) – File name extension, e.g., csv.

  • separator (str) – The delimiter between fields in the file.

  • splits (bool, optional) – If True, then all the members of the group are stored in separate files corresponding with each member. If False, then the data are stored in a single file.

Returns:

all_frames – The list of pandas dataframes loaded from the file location. If the files cannot be located, then None is returned.

Return type:

list

alphapy.frame.read_frame(directory, filename, extension, separator, index_col=False)

Read a delimiter-separated file into a data frame.

Parameters:
  • directory (str) – Full directory specification.

  • filename (str) – Name of the file to read, excluding the extension.

  • extension (str) – File name extension, e.g., csv.

  • separator (str) – The delimiter between fields in the file.

  • index_col (str, optional) – Column to use as the row labels in the dataframe.

Returns:

df – The pandas dataframe loaded from the file location. If the file cannot be located, then None is returned.

Return type:

pandas.DataFrame

alphapy.frame.sequence_frame(df, target, date_id, forecast_period=1, n_lags=1, leaders=[], group_id=None)

Create sequences of lagging and leading values, with lagging applied within groups.

Parameters:
  • df (pandas.DataFrame) – The original dataframe.

  • target (str) – The target variable for prediction.

  • date_id (str) – The datetime column.

  • forecast_period (int) – The period for forecasting the target of the analysis.

  • n_lags (int) – The number of lagged rows for prediction.

  • leaders (list) – The features that are contemporaneous with the target.

  • group_id (str, optional) – The grouping column.

Returns:

new_frame – The transformed dataframe with variable sequences.

Return type:

pandas.DataFrame

alphapy.frame.write_frame(df, directory, filename, extension, separator, tag='', index=False, index_label=None, columns=None)

Write a dataframe into a delimiter-separated file.

Parameters:
  • df (pandas.DataFrame) – The pandas dataframe to save to a file.

  • directory (str) – Full directory specification.

  • filename (str) – Name of the file to write, excluding the extension.

  • extension (str) – File name extension, e.g., csv.

  • separator (str) – The delimiter between fields in the file.

  • tag (str, optional) – An additional tag to add to the file name.

  • index (bool, optional) – If True, write the row names (index).

  • index_label (str, optional) – A column label for the index.

  • columns (str, optional) – A list of column names.

Returns:

None

Return type:

None

alphapy.globals module

class alphapy.globals.BarType(*values)

Bases: Enum

Bar Types.

Bar Types for running models, usually translated from a normal OHLC bar to a weighted bar based on volume, dollar amount, etc.

dollar = 2
heikinashi = 3
time = 1
class alphapy.globals.Encoders(*values)

Bases: Enum

AlphaPy Encoders.

These are the encoders used in AlphaPy, as configured in the model.yml file (features:encoding:type) You can learn more about encoders here [ENC].

backdiff = 1
basen = 2
binary = 3
catboost = 4
hashing = 5
helmert = 6
jstein = 7
leaveone = 8
mestimate = 9
onehot = 10
ordinal = 11
polynomial = 12
sum = 13
target = 14
woe = 15
class alphapy.globals.ModelType(*values)

Bases: Enum

AlphaPy Model Types.

Note

Multiclass Classification multiclass is not yet implemented.

classification = 1
multiclass = 3
ranking = 2
regression = 4
system = 5
class alphapy.globals.Objective(*values)

Bases: Enum

Scoring Function Objectives.

Best model selection is based on the scoring or Objective function, which must be either maximized or minimized. For example, roc_auc is maximized, while neg_log_loss is minimized.

maximize = 1
minimize = 2
class alphapy.globals.Orders

Bases: object

System Order Types.

Variables:
  • le (str) – long entry

  • se (str) – short entry

  • lx (str) – long exit

  • sx (str) – short exit

  • lh (str) – long exit at the end of the holding period

  • sh (str) – short exit at the end of the holding period

le = 'le'
lh = 'lh'
lx = 'lx'
se = 'se'
sh = 'sh'
sx = 'sx'
class alphapy.globals.Partition(*values)

Bases: Enum

AlphaPy Partitions.

test = 2
train = 1
class alphapy.globals.PivotType(*values)

Bases: Enum

Pivot Types.

PivotHigh = 'High'
PivotLow = 'Low'
class alphapy.globals.Scalers(*values)

Bases: Enum

AlphaPy Scalers.

These are the scaling methods used in AlphaPy, as configured in the model.yml file (features:scaling:type) You can learn more about feature scaling here [SCALE].

minmax = 1
standard = 2

alphapy.group module

class alphapy.group.Group(name, space=<alphapy.space.Space object>, dynamic=True, members={})

Bases: object

Create a new Group that contains common members. All defined groups are stored in Group.groups. Group names must be unique.

Parameters:
  • name (str) – Group name.

  • space (alphapy.Space, optional) – Namespace for the given group.

  • dynamic (bool, optional, default True) – Flag for defining whether or not the group membership can change.

  • members (set, optional) – The initial members of the group, especially if the new group is fixed, e.g., not dynamic.

Variables:

groups (dict) – Class variable for storing all known groups

Examples

>>> Group('tech')
add(newlist)

Add new members to the group.

Parameters:

newlist (list) – New members or identifiers to add to the group.

Returns:

None

Return type:

None

Notes

New members cannot be added to a fixed or non-dynamic group.

groups = {}
member(item)

Find a member in the group.

Parameters:

item (str) – The member to find the group.

Returns:

member_exists – Flag indicating whether or not the member is in the group.

Return type:

bool

remove(remlist)

Read in data from the given directory in a given format.

Parameters:

remlist (list) – The list of members to remove from the group.

Returns:

None

Return type:

None

Notes

Members cannot be removed from a fixed or non-dynamic group.

alphapy.metalabel module

alphapy.mflow_main module

alphapy.model module

alphapy.nlp module

alphapy.optimize module

alphapy.optimize.grid_report(results, n_top=3)

Report the top grid search scores.

Parameters:
  • results (dict of numpy arrays) – Mean test scores for each grid search iteration.

  • n_top (int, optional) – The number of grid search results to report.

Returns:

None

Return type:

None

Return the best hyperparameters for a grid search.

Parameters:
  • model (alphapy.Model) – The model object with grid search parameters.

  • estimator (alphapy.Estimator) – The estimator containing the hyperparameter grid.

Returns:

model – The model object with the grid search estimator.

Return type:

alphapy.Model

Notes

To reduce the time required for grid search, use either randomized grid search with a fixed number of iterations or a full grid search with subsampling. AlphaPy uses the scikit-learn Pipeline with feature selection to reduce the feature space.

References

For more information about grid search, refer to [GRID].

To learn about pipelines, refer to [PIPE].

Return the best feature set using recursive feature elimination with cross-validation.

Parameters:
  • model (alphapy.Model) – The model object with RFE parameters.

  • algo (str) – Abbreviation of the algorithm to run.

Returns:

model – The model object with the RFE support vector and the best estimator.

Return type:

alphapy.Model

Notes

If a scoring function is available, then AlphaPy can perform RFE with Cross-Validation (CV), as in this function; otherwise, it just does RFE without CV.

References

For more information about Recursive Feature Elimination, refer to [RFECV].

alphapy.plots module

alphapy.portfolio module

alphapy.space module

class alphapy.space.Space(subject='stock', source='prices', fractal='1d')

Bases: object

Create a new namespace.

Parameters:
  • subject (str) – An identifier for a group of related items.

  • source (str) – The data source of the subject.

  • fractal (str) – The time fractal of the data, e.g., “5m” or “1d”.

alphapy.space.space_name(subject, source, fractal)

Get the namespace string.

Parameters:
  • subject (str) – An identifier for a group of related items.

  • source (str) – The data source of the subject.

  • fractal (str) – The time fractal of the data, e.g., “5m” or “1d”.

Returns:

name – The joined namespace string.

Return type:

str

alphapy.system module

alphapy.transforms module

Package : AlphaPy Module : transforms Created : March 14, 2020

Copyright 2024 ScottFree Analytics LLC Mark Conway & Robert D. Scott II

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

alphapy.transforms.adx(df, p=14)

Calculate the Average Directional Index (ADX).

Parameters:
  • df (pandas.DataFrame) – Dataframe with all columns required for calculation. If you are applying ADX through vapply, then these columns are calculated automatically.

  • p (int) – The period over which to calculate the ADX.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

The Average Directional Movement Index (ADX) was invented by J. Welles Wilder in 1978 [WIKI_ADX]. Its value reflects the strength of trend in any given instrument.

alphapy.transforms.bbands(df, c='close', p=20, sd=2.0, low_band=True)

Calculate the Bollinger Bands.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Simple Moving Average.

  • sd (float) – The number of standard deviations.

  • low_band (bool, optional) – If set to True, then calculate the lower band, else the upper band.

Returns:

bband – The series for the selected Bollinger Band.

Return type:

pandas.Series

alphapy.transforms.bblower(df, c='close', p=20, sd=1.5)

Calculate the lower Bollinger Band.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Simple Moving Average.

  • sd (float) – The number of standard deviations.

Returns:

lower_band – The series containing the lower Bollinger Band.

Return type:

pandas.Series

alphapy.transforms.bbupper(df, c='close', p=20, sd=1.5)

Calculate the upper Bollinger Band.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Simple Moving Average.

  • sd (float) – The number of standard deviations.

Returns:

upper_band – The series containing the upper Bollinger Band.

Return type:

pandas.Series

alphapy.transforms.bizday(df, c)

Extract business day of month and week.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

Returns:

date_features – The dataframe containing the date features.

Return type:

pandas.DataFrame

alphapy.transforms.c2max(df, c1, c2)

Take the maximum value between two columns in a dataframe.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the two columns c1 and c2.

  • c1 (str) – Name of the first column in the dataframe df.

  • c2 (str) – Name of the second column in the dataframe df.

Returns:

max_val – The maximum value of the two columns.

Return type:

float

alphapy.transforms.c2min(df, c1, c2)

Take the minimum value between two columns in a dataframe.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the two columns c1 and c2.

  • c1 (str) – Name of the first column in the dataframe df.

  • c2 (str) – Name of the second column in the dataframe df.

Returns:

min_val – The minimum value of the two columns.

Return type:

float

alphapy.transforms.dateparts(df, c)

Extract date into its components: year, month, day, dayofweek.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

Returns:

date_features – The dataframe containing the date features.

Return type:

pandas.DataFrame

alphapy.transforms.diff(df, c, n=1)

Calculate the n-th order difference for the given variable.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • n (int) – The number of times that the values are differenced.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.diminus(df, p=14)

Calculate the Minus Directional Indicator (-DI).

Parameters:
  • df (pandas.DataFrame) – Dataframe with columns high and low.

  • p (int) – The period over which to calculate the -DI.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

A component of the average directional index (ADX) that is used to measure the presence of a downtrend. When the -DI is sloping downward, it is a signal that the downtrend is getting stronger [IP_NDI].

alphapy.transforms.diplus(df, p=14)

Calculate the Plus Directional Indicator (+DI).

Parameters:
  • df (pandas.DataFrame) – Dataframe with columns high and low.

  • p (int) – The period over which to calculate the +DI.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

A component of the average directional index (ADX) that is used to measure the presence of an uptrend. When the +DI is sloping upward, it is a signal that the uptrend is getting stronger [IP_PDI].

alphapy.transforms.dminus(df)

Calculate the Minus Directional Movement (-DM).

Parameters:

df (pandas.DataFrame) – Dataframe with high and low columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

Directional movement is negative (minus) when the prior low minus the current low is greater than the current high minus the prior high. This so-called Minus Directional Movement (-DM) equals the prior low minus the current low, provided it is positive. A negative value would simply be entered as zero [SC_ADX].

alphapy.transforms.dmplus(df)

Calculate the Plus Directional Movement (+DM).

Parameters:

df (pandas.DataFrame) – Dataframe with high and low columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

Directional movement is positive (plus) when the current high minus the prior high is greater than the prior low minus the current low. This so-called Plus Directional Movement (+DM) then equals the current high minus the prior high, provided it is positive. A negative value would simply be entered as zero [SC_ADX].

alphapy.transforms.ema(df, c, p=20)

Calculate the Exponential Moving Average (EMA) on a rolling basis.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average (EMA).

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

An exponential moving average (EMA) is a type of moving average that is similar to a simple moving average, except that more weight is given to the latest data [IP_EMA].

alphapy.transforms.gap(df)

Calculate the gap percentage between the current open and the previous close.

Parameters:

df (pandas.DataFrame) – Dataframe with open and close columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

A gap is a break between prices on a chart that occurs when the price of a stock makes a sharp move up or down with no trading occurring in between [IP_GAP].

alphapy.transforms.gapbadown(df)

Determine whether or not there has been a breakaway gap down.

Parameters:

df (pandas.DataFrame) – Dataframe with open and low columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

References

A breakaway gap represents a gap in the movement of a stock price supported by levels of high volume [IP_BAGAP].

alphapy.transforms.gapbaup(df)

Determine whether or not there has been a breakaway gap up.

Parameters:

df (pandas.DataFrame) – Dataframe with open and high columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

References

A breakaway gap represents a gap in the movement of a stock price supported by levels of high volume [IP_BAGAP].

alphapy.transforms.gapdown(df)

Determine whether or not there has been a gap down.

Parameters:

df (pandas.DataFrame) – Dataframe with open and close columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

References

A gap is a break between prices on a chart that occurs when the price of a stock makes a sharp move up or down with no trading occurring in between [IP_GAP].

alphapy.transforms.gapup(df)

Determine whether or not there has been a gap up.

Parameters:

df (pandas.DataFrame) – Dataframe with open and close columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

References

A gap is a break between prices on a chart that occurs when the price of a stock makes a sharp move up or down with no trading occurring in between [IP_GAP].

alphapy.transforms.gtval(df, c1, c2)

Determine whether or not the first column of a dataframe is greater than the second.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the two columns c1 and c2.

  • c1 (str) – Name of the first column in the dataframe df.

  • c2 (str) – Name of the second column in the dataframe df.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

alphapy.transforms.gtval0(df, c1, c2)

For positive values in the first column of the dataframe that are greater than the second column, get the value in the first column, otherwise return zero.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the two columns c1 and c2.

  • c1 (str) – Name of the first column in the dataframe df.

  • c2 (str) – Name of the second column in the dataframe df.

Returns:

new_val – A positive value or zero.

Return type:

float

alphapy.transforms.haclose(df)

Calculate the Heikin-Ashi Close.

Parameters:

df (pandas.DataFrame) – Dataframe with OHLC columns.

Returns:

haclose_ds – The series containing the Heikin-Ashi Close.

Return type:

pandas.Series

alphapy.transforms.hahigh(df)

Calculate the Heikin-Ashi High.

Parameters:

df (pandas.DataFrame) – Dataframe with OHLC columns.

Returns:

hahigh_ds – The series containing the Heikin-Ashi High.

Return type:

pandas.Series

alphapy.transforms.halow(df)

Calculate the Heikin-Ashi Low.

Parameters:

df (pandas.DataFrame) – Dataframe with OHLC columns.

Returns:

halow_ds – The series containing the Heikin-Ashi Low.

Return type:

pandas.Series

alphapy.transforms.haopen(df)

Calculate the Heikin-Ashi Open.

Parameters:

df (pandas.DataFrame) – Dataframe with OHLC columns.

Returns:

haopen – The series containing the Heikin-Ashi Open.

Return type:

pandas.Series

alphapy.transforms.higher(df, c, o=1)

Determine whether or not a series value is higher than the value o periods back.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • o (int, optional) – Offset value for shifting the series.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

alphapy.transforms.highest(df, c, p=20)

Calculate the highest value on a rolling basis.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the rolling maximum.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.hlrange(df, p=1)

Calculate the Range, the difference between High and Low.

Parameters:
  • df (pandas.DataFrame) – Dataframe with columns high and low.

  • p (int) – The period over which the range is calculated.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.keltner(df, c='close', p=20, atrs=1.5, channel='midline')

Calculate the Keltner Channels.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • atrs (float) – The multiple of Average True Range.

Returns:

kc – The series containing the Keltner Channel.

Return type:

pandas.Series

alphapy.transforms.keltnerlb(df, c='close', p=20, atrs=1.5)

Calculate the lower Keltner Channel.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • atrs (float) – The multiple of Average True Range.

Returns:

kclb – The series containing the lower Keltner Channel.

Return type:

pandas.Series

alphapy.transforms.keltnerml(df, c='close', p=20, atrs=1.5)

Calculate the midline Keltner Channel.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • atrs (float) – The multiple of Average True Range.

Returns:

kcml – The series containing the midline Keltner Channel.

Return type:

pandas.Series

alphapy.transforms.keltnerub(df, c='close', p=20, atrs=1.5)

Calculate the upper Keltner Channel.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • atrs (float) – The multiple of Average True Range.

Returns:

kcub – The series containing the upper Keltner Channel.

Return type:

pandas.Series

alphapy.transforms.lower(df, c, o=1)

Determine whether or not a series value is lower than the value o periods back.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • o (int, optional) – Offset value for shifting the series.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

alphapy.transforms.lowest(df, c, p=20)

Calculate the lowest value on a rolling basis.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the rolling minimum.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.ma(df, c='close', p=20)

Calculate the mean on a rolling basis.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the rolling mean.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

In statistics, a moving average (rolling average or running average) is a calculation to analyze data points by creating series of averages of different subsets of the full data set [WIKI_MA].

alphapy.transforms.maabove(df, c, p=50)

Determine those values of the dataframe that are above the moving average.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period of the moving average.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

alphapy.transforms.mabelow(df, c, p=50)

Determine those values of the dataframe that are below the moving average.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period of the moving average.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

alphapy.transforms.maratio(df, c, p1=1, p2=10)

Calculate the ratio of two moving averages.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p1 (int) – The period of the first moving average.

  • p2 (int) – The period of the second moving average.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.negval0(df, c)

Get the negative value, otherwise zero.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

Returns:

new_column – Negative value or zero.

Return type:

pandas.Series (float)

alphapy.transforms.negvals(df, c)

Find the negative values in the series.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

alphapy.transforms.net(df, c='close', o=1)

Calculate the net change of a given column.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • o (int, optional) – Offset value for shifting the series.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

Net change is the difference between the closing price of a security on the day’s trading and the previous day’s closing price. Net change can be positive or negative and is quoted in terms of dollars [IP_NET].

alphapy.transforms.netreturn(df, c, o=1)

Calculate the net return, or Return On Invesment (ROI)

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • o (int, optional) – Offset value for shifting the series.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

ROI measures the amount of return on an investment relative to the original cost. To calculate ROI, the benefit (or return) of an investment is divided by the cost of the investment, and the result is expressed as a percentage or a ratio [IP_ROI].

alphapy.transforms.pchange(df, c, o=1)

Calculate the percentage change within the same variable.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • o (int) – Offset to the previous value.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.pchange2(df, c1, c2)

Calculate the percentage change between two variables.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the two columns c1 and c2.

  • c1 (str) – Name of the first column in the dataframe df.

  • c2 (str) – Name of the second column in the dataframe df.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.posval0(df, c)

Get the positive value, otherwise zero.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

Returns:

new_column – Positive value or zero.

Return type:

pandas.Series (float)

alphapy.transforms.posvals(df, c)

Find the positive values in the series.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

alphapy.transforms.rebalancesignal(df)

Shannon’s Demon rebalance signal for ML target.

Parameters:

df (pandas.DataFrame) – Dataframe with Shannon signal columns.

Returns:

new_column – 1 for rebalancing periods, 0 for hold periods.

Return type:

pandas.Series (int)

alphapy.transforms.rindex(df, ci, ch, cl, p=1)

Calculate the range index spanning a given period p.

The range index is a number between 0 and 100 that relates the value of the index column ci to the high column ch and the low column cl. For example, if the low value of the range is 10 and the high value is 20, then the range index for a value of 15 would be 50%. The range index for 18 would be 80%.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the columns ci, ch, and cl.

  • ci (str) – Name of the index column in the dataframe df.

  • ch (str) – Name of the high column in the dataframe df.

  • cl (str) – Name of the low column in the dataframe df.

  • p (int) – The period over which the range index of column ci is calculated.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

alphapy.transforms.rsi(df, p=14)

Calculate the Relative Strength Index (RSI).

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column net.

  • p (int) – The period over which to calculate the RSI.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

Developed by J. Welles Wilder, the Relative Strength Index (RSI) is a momentum oscillator that measures the speed and change of price movements [SC_RSI].

alphapy.transforms.runs(df, c='close', w=20)

Calculate the total number of runs.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • w (int) – The rolling period.

Returns:

runs_value – The total number of distinct runs in the rolling window.

Return type:

int

Example

>>> runs(df, c, 20)
alphapy.transforms.runstest(df, c='close', w=20, wfuncs='all')

Perform a runs test on binary series.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • w (int) – The rolling period.

  • wfuncs (list) – The set of runs test functions to apply to the column:

    'all':

    Run all of the functions below.

    'rtotal':

    The running total over the window period.

    'runs':

    Total number of runs in window.

    'streak':

    The length of the latest streak.

    'zscore':

    The Z-Score over the window period.

Returns:

new_features – The dataframe containing the runs test features.

Return type:

pandas.DataFrame

References

For more information about runs tests for detecting non-randomness, refer to [RUNS].

alphapy.transforms.runtotal(df, c='close', w=50)

Calculate the running total.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • w (int) – The rolling period.

Returns:

running_total – The final running total.

Return type:

int

Example

>>> runtotal(df, c, 50))
alphapy.transforms.shannhold(df)

Shannon’s Demon hold signal.

Parameters:

df (pandas.DataFrame) – Dataframe with weight_deviation column.

Returns:

new_column – True when weight deviation is low.

Return type:

pandas.Series (bool)

alphapy.transforms.shannlong(df)

Shannon’s Demon long signal.

Parameters:

df (pandas.DataFrame) – Dataframe with weight_deviation column.

Returns:

new_column – True when high weight deviation and positive weight deviation.

Return type:

pandas.Series (bool)

alphapy.transforms.shannshort(df)

Shannon’s Demon short signal.

Parameters:

df (pandas.DataFrame) – Dataframe with weight_deviation column.

Returns:

new_column – True when high weight deviation and negative weight deviation.

Return type:

pandas.Series (bool)

alphapy.transforms.split2letters(df, c)

Separate text into distinct characters.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the text column in the dataframe df.

Returns:

new_feature – The array containing the new feature.

Return type:

pandas.Series

Example

The value ‘abc’ becomes ‘a b c’.

alphapy.transforms.streak(df, c='close', w=20)

Determine the length of the latest streak.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • w (int) – The rolling period.

Returns:

latest_streak – The length of the latest streak.

Return type:

int

Example

>>> streak(df, c, 20)
alphapy.transforms.tdseqbuy(df, c='close', high='high', low='low')

Calculate Tom DeMark’s Sequential Buy indicator.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the columns c, high, and low.

  • c (str, optional) – Name of the column in the dataframe df representing the close prices.

  • high (str, optional) – Name of the column in the dataframe df representing the high prices.

  • low (str, optional) – Name of the column in the dataframe df representing the low prices.

Returns:

tdbuy – The array containing the Sequential Buy count.

Return type:

pandas.Series

References

Tom DeMark’s Sequential indicator is used to identify a potential reversal of the current trend by comparing the closing price to previous closing prices over a fixed period [WIKI_TDSEQ].

alphapy.transforms.tdseqsell(df, c='close', high='high', low='low')

Calculate Tom DeMark’s Sequential Sell indicator.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the columns c, high, and low.

  • c (str, optional) – Name of the column in the dataframe df representing the close prices.

  • high (str, optional) – Name of the column in the dataframe df representing the high prices.

  • low (str, optional) – Name of the column in the dataframe df representing the low prices.

Returns:

tdsell – The array containing the Sequential Sell count.

Return type:

pandas.Series

References

Tom DeMark’s Sequential indicator is used to identify a potential reversal of the current trend by comparing the closing price to previous closing prices over a fixed period [WIKI_TDSEQ].

alphapy.transforms.texplode(df, c)

Get dummy values for a text column.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the text column in the dataframe df.

Returns:

dummies – The dataframe containing the dummy variables.

Return type:

pandas.DataFrame

Example

This function is useful for columns that appear to have separate character codes but are consolidated into a single column. Here, the column c is transformed into five dummy variables.

c

0_a

1_x

1_b

2_x

2_z

abz

1

0

1

0

1

abz

1

0

1

0

1

axx

1

1

0

1

0

abz

1

0

1

0

1

axz

1

1

0

0

1

alphapy.transforms.timeparts(df, c)

Extract time into its components: hour, minute, second.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

Returns:

time_features – The dataframe containing the time features.

Return type:

pandas.DataFrame

alphapy.transforms.truehigh(df)

Calculate the True High value.

Parameters:

f (pandas.DataFrame) – Dataframe with high and low columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

Today’s high, or the previous close, whichever is higher [TS_TR].

alphapy.transforms.truelow(df)

Calculate the True Low value.

Parameters:

f (pandas.DataFrame) – Dataframe with high and low columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

Today’s low, or the previous close, whichever is lower [TS_TR].

alphapy.transforms.truerange(df)

Calculate the True Range value.

Parameters:

df (pandas.DataFrame) – Dataframe with with high and low columns.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (float)

References

True High - True Low [TS_TR].

alphapy.transforms.ttmsqueeze(df, c='close', p=20)

Calculate the TTM Squeeze momentum oscillator.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

Returns:

ttmosc – The value of the TTM Squeeze Indicator.

Return type:

float

alphapy.transforms.ttmsqueezelong(df, c='close', p=20, sd=2.0, atrs=1.5)

Signal a TTM Squeeze Long Entry.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • sd (float) – The number of standard deviations.

  • atrs (float) – The multiple of Average True Range.

Returns:

squeezelong – True if there is a TTM Squeeze Long Entry.

Return type:

bool

alphapy.transforms.ttmsqueezeoff(df, c='close', p=20, sd=2.0, atrs=1.5)

Determine the TTM Squeeze Off condition.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • sd (float) – The number of standard deviations.

  • atrs (float) – The multiple of Average True Range.

Returns:

squeezeoff – The status of the TTM Squeeze Off Indicator.

Return type:

bool

alphapy.transforms.ttmsqueezeon(df, c='close', p=20, sd=2.0, atrs=1.5)

Determine the TTM Squeeze On condition.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • sd (float) – The number of standard deviations.

  • atrs (float) – The multiple of Average True Range.

Returns:

squeezeon – The status of the TTM Squeeze On Indicator.

Return type:

bool

alphapy.transforms.ttmsqueezeshort(df, c='close', p=20, sd=2.0, atrs=1.5)

Signal a TTM Squeeze Short Entry.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • p (int) – The period over which to calculate the Exponential Moving Average.

  • sd (float) – The number of standard deviations.

  • atrs (float) – The multiple of Average True Range.

Returns:

squeezeshort – True if there is a TTM Squeeze Short Entry.

Return type:

bool

alphapy.transforms.vwap(df, c='close', granularity='day', anchor_dates=None)

Adjusted VWAP calculation using Unix timestamps for compatibility with np.digitize.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • granularity (str) – The calendrical period over which to calculate VWAP.

  • anchor_dates (list) – The set of dates over which to calculate VWAP.

Returns:

vwap_value – The calculated Volume-Weighted Average Price (VWAP).

Return type:

float

alphapy.transforms.wdev(df)

Calculate weight deviation based on price movements.

Simulates portfolio weight deviation by tracking price changes from a 50/50 rebalanced portfolio assumption.

Parameters:

df (pandas.DataFrame) – Dataframe with OHLCV data.

Returns:

new_column – The simulated weight deviation values.

Return type:

pandas.Series (float)

alphapy.transforms.wdevhigh(df)

Determine if weight deviation is high (>= 0.2).

Parameters:

df (pandas.DataFrame) – Dataframe with weight_deviation column.

Returns:

new_column – True when absolute weight deviation >= 0.2.

Return type:

pandas.Series (bool)

alphapy.transforms.wdevlow(df)

Determine if weight deviation is low (<= 0.05).

Parameters:

df (pandas.DataFrame) – Dataframe with weight_deviation column.

Returns:

new_column – True when absolute weight deviation <= 0.05.

Return type:

pandas.Series (bool)

alphapy.transforms.xmadown(df, c='close', pfast=20, pslow=50)

Determine those values of the dataframe that cross below the moving average.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str, optional) – Name of the column in the dataframe df.

  • pfast (int, optional) – The period of the fast moving average.

  • pslow (int, optional) – The period of the slow moving average.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

References

In the statistics of time series, and in particular the analysis of financial time series for stock trading purposes, a moving-average crossover occurs when, on plotting two moving averages each based on different degrees of smoothing, the traces of these moving averages cross [WIKI_XMA].

alphapy.transforms.xmaup(df, c='close', pfast=20, pslow=50)

Determine those values of the dataframe that are below the moving average.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str, optional) – Name of the column in the dataframe df.

  • pfast (int, optional) – The period of the fast moving average.

  • pslow (int, optional) – The period of the slow moving average.

Returns:

new_column – The array containing the new feature.

Return type:

pandas.Series (bool)

References

In the statistics of time series, and in particular the analysis of financial time series for stock trading purposes, a moving-average crossover occurs when, on plotting two moving averages each based on different degrees of smoothing, the traces of these moving averages cross [WIKI_XMA].

alphapy.transforms.zscore(df, c='close', w=20)

Calculate the Z-Score.

Parameters:
  • df (pandas.DataFrame) – Dataframe containing the column c.

  • c (str) – Name of the column in the dataframe df.

  • w (int) – The rolling period.

Returns:

zscore – The value of the Z-Score.

Return type:

float

References

To calculate the Z-Score, you can find more information here [ZSCORE].

Example

>>> zscore(f, c, 20)

alphapy.utilities module

alphapy.utilities.datetime_stamp()

Returns today’s datetime stamp.

Returns:

dtstamp – The valid datetime string in YYYYmmdd_hhmmss format.

Return type:

str

alphapy.utilities.ensure_dir(directory_path)
alphapy.utilities.get_web_content(url)

Use the requests package to get data over HTTP.

Parameters:

url (str) – The URL for making the request over HTTP.

Returns:

response – The results returned from the request.

Return type:

str

alphapy.utilities.most_recent_file(directory, file_spec)

Find the most recent file in a directory.

Parameters:
  • directory (str) – Full directory specification.

  • file_spec (str) – Wildcard search string for the file to locate.

Returns:

file_name – Name of the file to read, excluding the extension.

Return type:

str

alphapy.utilities.np_store_data(data, dir_name, file_name, extension, separator)

Store NumPy data in a file.

Parameters:
  • data (numpy array) – The model component to store

  • dir_name (str) – Full directory specification.

  • file_name (str) – Name of the file to read, excluding the extension.

  • extension (str) – File name extension, e.g., csv.

  • separator (str) – The delimiter between fields in the file.

Returns:

None

Return type:

None

alphapy.utilities.remove_list_items(elements, alist)

Remove one or more items from the given list.

Parameters:
  • elements (list) – The items to remove from the list alist.

  • alist (list) – Any object of any type can be a list item.

Returns:

sublist – The subset of items after removal.

Return type:

list

Examples

>>> test_list = ['a', 'b', 'c', test_func]
>>> remove_list_items([test_func], test_list)  # ['a', 'b', 'c']
alphapy.utilities.run_command(cmd_with_args, cwd)

Run a subprocess based on the command with arguments.

Parameters:
  • cmd_with_args (str) – The command to run as a subprocess.

  • cwd (str) – The current working directory.

Returns:

result – The result returned from running the subprocess.

Return type:

str

alphapy.utilities.split_duration(duration_str)

Subtract a number of days from a given date.

Parameters:

duration_str (str) – An alphanumeric string in the format of a Pandas offset alias.

Returns:

  • value (int) – The duration value.

  • unit (str) – The scale of the period.

Examples

>>> split_duration('5min')   # 5, 'min'
alphapy.utilities.subtract_days(date_string, ndays)

Subtract a number of days from a given date.

Parameters:
  • date_string (str) – An alphanumeric string in the format %Y-%m-%d.

  • ndays (int) – Number of days to subtract.

Returns:

new_date_string – The adjusted date string in the format %Y-%m-%d.

Return type:

str

Examples

>>> subtract_days('2017-11-10', 31)   # '2017-10-10'
alphapy.utilities.valid_date(date_string)

Determine whether or not the given string is a valid date.

Parameters:

date_string (str) – An alphanumeric string in the format %Y-%m-%d.

Returns:

date_string – The valid date string.

Return type:

str

Raises:

ValueError – Not a valid date.

Examples

>>> valid_date('2016-7-1')   # datetime.datetime(2016, 7, 1, 0, 0)
>>> valid_date('345')        # ValueError: Not a valid date
alphapy.utilities.valid_name(name)

Determine whether or not the given string is a valid alphanumeric string.

Parameters:

name (str) – An alphanumeric identifier.

Returns:

resultTrue if the name is valid, else False.

Return type:

bool

Examples

>>> valid_name('alpha')   # True
>>> valid_name('!alpha')  # False

alphapy.variables module

class alphapy.variables.Variable(name, expr, replace=False)

Bases: object

Create a new variable as a key-value pair. All variables are stored in Variable.variables. Duplicate keys or values are not allowed, unless the replace parameter is True.

Parameters:
  • name (str) – Variable key.

  • expr (str) – Variable value.

  • replace (bool, optional) – Replace the current key-value pair if it already exists.

Variables:

variables (dict) – Class variable for storing all known variables

Examples

>>> Variable('rrunder', 'rr_3_20 <= 0.9')
>>> Variable('hc', 'higher_close')
variables = {}
alphapy.variables.allvars(expr, match_fractal=True, match_lag=True)

Get the list of valid names in the expression.

Parameters:
  • expr (str) – A valid expression conforming to the Variable Definition Language.

  • match_fractal (bool) – Flag to match fractal special character.

  • match_lag (bool) – Flag to match fractal special character.

Returns:

vlist – List of valid variable names.

Return type:

list

alphapy.variables.get_daily_dollar_vol(df, p=60)

Calculate daily dollar volume.

Parameters:
  • df (pandas.DataFrame) – Frame containing the close and volume values.

  • p (int) – The lookback period for computing daily dollar volume.

Returns:

ds_dv – The array of dollar volumes.

Return type:

pandas.Series (float)

alphapy.variables.map_bar_type(df, bar_type, fractal, p=100, pv_factor=1.0)

Map time bars to a different bar type.

Parameters:
  • df (pandas.DataFrame) – The dataframe to convert to a different bar type.

  • bar_type (Enum.BarType) – The bar type for conversion (Dollar Bar, Heikin-Ashi, et al).

  • fractal (str) – Pandas offset alias.

  • p (int) – The period over which to calculate dollar volume.

  • pv_factor (float) – The multiple of daily dollar volume for the dollar bar threshold.

Returns:

df – The converted dataframe for the target bar type.

Return type:

pandas.DataFrame

alphapy.variables.map_dollar_bars(df, cols, fractal, p=100, pv_factor=1.0)

Map time bars to dollar bars.

Parameters:
  • df (pandas.DataFrame) – The dataframe to convert to a different bar type.

  • cols (list) – List of column names in the price dataframe.

  • fractal (str) – Pandas offset alias.

  • p (int) – The period over which to calculate dollar volume.

  • pv_factor (float) – The multiple of daily dollar volume for the dollar bar threshold.

Returns:

dollar_bars – The list of dollar bar records.

Return type:

list

alphapy.variables.vapply(group, market_specs, vfuncs=None)

Apply a set of variables to multiple dataframes.

Parameters:
  • group (alphapy.Group) – The input group.

  • market_specs (dict) – The specifications for controlling the MarketFlow pipeline.

  • vfuncs (dict, optional) – Dictionary of external modules and functions.

Returns:

dfs – The list of pandas dataframes to analyze.

Return type:

list

Other Parameters:

Frame.frames (dict) – Global dictionary of dataframes

alphapy.variables.vexec(f, v, vfuncs=None)

Add a variable to the given dataframe.

This is the core function for adding a variable to a dataframe. The default variable functions are already defined locally in alphapy.transforms; however, you may want to define your own variable functions. If so, then the vfuncs parameter will contain the list of modules and functions to be imported and applied by the vexec function.

To write your own variable function, your function must have a pandas DataFrame as an input parameter and must return a pandas DataFrame with the new variable(s).

Parameters:
  • f (pandas.DataFrame) – Dataframe to contain the new variable.

  • v (str) – Variable to add to the dataframe.

  • vfuncs (dict, optional) – Dictionary of external modules and functions.

Returns:

f – Dataframe with the new variable.

Return type:

pandas.DataFrame

Other Parameters:

Variable.variables (dict) – Global dictionary of variables

alphapy.variables.vexpr(f, v)

Get the expanded expression for a variable.

Parameters:
  • f (pandas.DataFrame) – Dataframe containing the variables.

  • v (str) – Variable to add to the dataframe.

Returns:

expr_new – Expanded expression for evaluation.

Return type:

str

Other Parameters:

Variable.variables (dict) – Global dictionary of variables

alphapy.variables.vfunc(f, v, vfuncs)

Find a function for defining a variable.

Parameters:
  • f (pandas.DataFrame) – Dataframe to contain the new variable.

  • v (str) – Variable representing a function.

  • vfuncs (dict, optional) – Dictionary of external modules and functions.

Returns:

  • func (function) – Function to execute for defining the variable.

  • newlist (list) – Function parameter list.

Other Parameters:

Variable.variables (dict) – Global dictionary of variables

alphapy.variables.vparse(vname)

Parse a variable name into its respective components.

Parameters:

vname (str) – The name of the variable.

Returns:

  • vxlag (str) – Original variable name without the lag component.

  • root (str) – The base variable name without the parameters.

  • valias (str) – Expanded name with alias substitution.

  • plist (list) – The parameter list.

  • lag (int) – The offset starting with the current value [0] and counting back, e.g., an offset [1] means the previous value of the variable.

Notes

AlphaPy makes feature creation easy. The syntax of a variable name maps to a function call:

xma_20_50 => xma(20, 50)

Examples

>>> vparse('lmin_5[2]')
# (0, 'lmin_5', 'lmin', 'lowest_low', ['5'], 2)
alphapy.variables.vsub(v, expr)

Substitute the variable parameters into the expression.

This function performs the parameter substitution when applying features to a dataframe. It is a mechanism for the user to override the default values in any given expression when defining a feature, instead of having to programmatically call a function with new values.

Parameters:
  • v (str) – Variable name.

  • expr (str) – The expression for substitution.

Returns:

The expression with the new, substituted values.

Return type:

newexpr

alphapy.variables.vtree(vname)

Get all of the antecedent variables.

Before applying a variable to a dataframe, we have to recursively get all of the child variables, beginning with the starting variable’s expression. Then, we have to extract the variables from all the subsequent expressions. This process continues until all antecedent variables are obtained.

Parameters:

vname (str) – A valid variable stored in Variable.variables.

Returns:

all_variables – The variables that need to be applied before vname.

Return type:

list

Other Parameters:

Variable.variables (dict) – Global dictionary of variables

Module contents